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Abstract 
NIRS is a non-invasive spectroscopic method for measuring 
oxygenated and deoxygenated hemoglobin concentrations in 
cortical regions of the brain. In this report we investigate the 
use of machine learning techniques to train a model for online 
classification of a specific motor activ ity -- finger tapping -- 
using NIRS data. Thus, NIRS measurements of blood flow 
serve as an indirect proxy for the direct signal -- neural 
activity. However, changes in blood flow to and from the 
brain are relatively slow; and so there is a significant delay 
before the brain activ ity registers at peak level in NIRS output. 
Furthermore, the NIRS signal tends to be extremely noisy, as 
many factors may play a ro le in the concentration of blood in 
the brain. To tackle these problems, we first pre-filter the data 
to smooth out the noise, and then compute key features of the 
data. We use PCA and greedy feature selection to improve the 
robustness of our features and to reduce overfitting. Finally, 
we train classifiers using the resulting features to classify 
NIRS data as corresponding to periods of idleness or finger 
tapping.  

1. Introduction  

Imagine being able to turn on or off a TV not by pushing a red 
button on your remote control, but just by thinking "TV on" or 
"TV off". As a first step in the direction of brain computer 
interfaces, we are working on using the NIRS brain-imaging 
technique to detect a simple, strong brain signal corresponding 
to periods of active finger tapping. Data is gathered through a 
fairly simple experiment: the subject puts on a NIRS brain  
scanner and is periodically instructed to start or stop tapping 
her fingers.  

 
Figure 1. NIRS Sensors 

The NIRS brain scanner is essentially just a head garment with 
sensors that can measure blood flow in different regions of the 
brain. Roughly, each pair o f sensors corresponds to one 
channel; the diagram on the right shows the sensor and 

channel layout for the left hemisphere scanner. For each 
channel, the NIRS scanner detects the concentrations of 
oxygenated and deoxygenated hemoglobin. This signal is a 
pair of real numbers, and is collected with a time resolution of 
0.1 seconds. The activity of cortical reg ions of the brain can 
also be directly detected by measuring electrical fields. 
However, the state-of-the-art technique for measuring such 
signals -- the EEG technique -- is far less practical as a signal 
source for a brain-computer interface; it is more expensive and 
less robust than the NIRS scanner, in that it does not allow 
subjects to move around.  
 
The NIRS scanner measures a secondary or derivative signal 
rather than the direct source signal of interest. As a brain 
region becomes active, it requires energy to maintain its 
activity and blood flows into it, bringing oxygenated 
hemoglobin. As the oxygen is used up, the hemoglobin 
becomes deoxygenated and flows out from the brain reg ion to 
be replenished.  This is a fairly consistent signal, but it 
exhibits an inherent delay, due to the speed of blood flow, in  
measuring brain activity.  
 
Our goal in this project is to design an online classifier that 
can detect brain activity accurately and with a minimal delay -
- you wouldn't want to have to think "TV on" for ten seconds 
straight before the TV actually turned on! The time difference 
between when the patient begin tapping and when the 
classifier first correctly identifies this is called the onset delay. 
Previous work has succeeded in designing classifiers with 
very high accuracies, but onset delays in the 3- to 6-second 
range [1][2].  

2. Baseline   
As a very naive baseline, we ran an SVM-based classifier 
using only the raw NIRS measurements from channel 13 (the 
one that directly measures the cortical region that controls 
finger tapping). On the non-noisy data set, this resulted in a 
training accuracy of about 73% and an undefined onset/offset 
delay. By an "undefined delay", we mean that measuring the 
delay doesn't make sense for this baseline: it is unable to even 
identify any tapping, much less do it with any form of delay!  
 
Delay Calculation 
It is worth noting that establishing a good metric for the 
testing delay is itself a nontriv ial task. The delays we present 
are computed as follows: For each period of finger tapping 
activity, we compute the delay to the earliest subregion L of 
duration at least three-quarters of a second, such that our 



classifier correctly classified each sample in L positively. We 
then take the overall delay to be the mean of the delays over 
all periods of finger tapping activity.  
 
 

3. Classifiers  

3.1 SVM  
After plotting the raw data following some pre-filtering (see 
Section 5), we predicted the feature space would form a 
approximately linearly separable data set. For this reason a 
majority of our trial runs were conducted using SVM with a 
radial basis function kernel, which resulted in a linear 
separating hyper-plane. In the end using the right combination 
of features History and Grad ient we were able to get a test 
accuracy of 85.80% and a delay of 3.44 seconds. We used a 
greedy feature selection algorithm in order to get a locally  
optimal set of features (See Section 7).  
3.2 AdaBoost  
As an alternative to the SVM classifier, we t ried using 
AdaBoost to see if we could achieve better performance. We 
ran two variat ions on the AdaBoost algorithm: Gentle 
AdaBoost and Modest AdaBoost [AdaBoost Toolbox], using 
decision tree stumps for each. Using only the features 
oxygenated and deoxygenated bloodflow as a baseline, we 
started off with an accuracy of around 72% (both variations 
performing similarly) and, again, and unbounded delay. 
However, using all of the reasonable features, filtered through 
PCA, gave much better results: Gentle AdaBoost is more  
fin icky, prone to overtraining; but with careful parameter 
tuning we were able to attain 86.01% test accuracy. With less 
careful parameter selection, this variation achieved near-
perfect training set classifcation, but test accuracies closer to 
83%. Modest AdaBoost is a variation that is inherently 
resistant to overtraining, and pretty much any reasonable 
parameter setting gave a test accuracy around 85.5%, with a 
similar training accuracy. Both variations resulted in a delay 
of about 3.7 seconds. Thus, we found the peak performance of 
AdaBoost to be nearly identical to that of SVM. This offers 
some evidence that surpassing the present results likely  
requires a radically different approach, perhaps with more 
focus on pre-processing the data than on novel features or 
learning algorithms. 

 

4. Features  

Channel Variation  
The oxygenated and deoxygenated concentrations from 
channel 13 turned out to be the most relevant to predicting 
whether the subject was finger tapping, from both a empirical 
and theoretical standpoint. However, we found that by using 
also the channels adjacent to 13 -- 9, 10, 16, and 17 (see figure 
[1]) -- we were able to improve test accuracy from the baseline 
by 2% and reduce onset delay by 0.7 seconds.   
 
Gradient Slope/Rate of Change  
We looked at slope (rate of change, or first and second 
derivatives of the values). In general, changes in bloodflow 
through a region of the brain indicates "brain activity" in that 
region.  By measuring the gradients of the blood flow, the 
classifier is able to identify critical transitions more quickly  
than it could using a simple threshold. Simply using the 
gradient of oxygenated and deoxygenated blood is not helpful 
at all on its own (without any pre-filtering). 
 

 
 
 
 
 
 
 
 
 
 

Figure 2. Optimal SVM Output 

Figure 3. Optimal AdaBoost Output 

Figure 4. Gradient Features 



Ratio of Oxygenated/Deoxygenated Bloodflow  
We added this feature as a cross-term between the two signals 
we could directly measure, but it only resulted in dramatic 
overfitting to the training set (see results in Section 7). 
 
Linear Combinations of Oxygenated and Deoxygenated 
Bloodflow  
We chose linear combinations of oxygenated and 
deoxygenated bloodflow concentration as one of our features, 
which worked out fairly well on top of the pre-filtering that we 
did. We also took the gradient and second derivatives of these 
values and they made (see results in section 7.) somewhat of a 
small d ifference in test accuracy.  
 
Classifying with Look-ahead  
Though we are u ltimately looking for an on-line algorithm, if 
we incorporate future data, we're able to get astounding 
accuracy. In fact doing something as simple as taking 
oxygenated data set and smoothing it so that the ith timestep is 
the average of the next 50 time-steps gives us astounding 
results: 90.5% accuracy and 1.5 seconds of delay. We did not 
include these results in the table as they're not usable to the 
end-product of developing an online algorithm. 
 

Previous Predicted Label  
We found that there was a tradeoff between attaining low 
delays and high false-positive rates. As one way to balance 
these, we tried adding a feature that would introduce a penalty 
for changing labels over time. Of course, if we use the actual 
label of the previous datapoint as a feature, this gives almost 
perfect accuracy, but is not a valid feature for the test set. As a 
replacement, we tried substituting the predicted label of the 
previous data point. For the training set, we computed this 
feature by initializing it to a constant, and then iteratively 
running SVM on the training data until the feature values 
converged. We then labeled the test data one at a time, and 
updated this feature for future data points based on the current 
prediction. However, this feature did not end up helping the 
performance of the classifier, most likely because it was just 
too noisy. A possible direction for further exp loration is to 
instead look at the confidence values returned by AdaBoost, 
and reject label transitions that have a confidence value less 
than a learned threshold.  
 

5. Pre-filtering  

 
NIRS data is inherently noisy, as blood flow through the brain 
can be somewhat sporadic. This turned out to be problematic, 
as certain features like gradient, depend on a smoothed 
surface, and taking the gradient of raw data proved not to be 
effective. We exp lored several s moothing techniques that 
worked fairly well in reducing the noise. It turns out that 
smoothing the data was the singular most effective action in 
terms of increasing accuracy and reducing delay.   

 
 
 
 

 
 
 

5.1 Exponential Moving Averages  

Running classification techniques naively led to poor results, 
and as we examined the feature space, we realized the need for 
some type of smoothing of the data. We first smoothed the 
data by taking at each timestep t the exponentially weighted 
moving average of the previous timesteps and then normalized 
the data afterwards. This proved enormously helpful in  
smoothing the data and straightening out features such as 
gradient and history. Large fluctuations from t imestep to 
timestep were removed and we were able to work with a more 
natural transformation of the data set. For virtually all of the 
features attempted, EMA shifted our accuracy from the 70% 
range to the 80% range.  

5.2 Other Filtering  
We also tried other smoothing techniques such as taking the 
average every k  points, as well as running a low-frequency 
Chebyshev filter (both type 1 and type 2). Both filters had 
litt le additional improvement over EMA.  

 

Figure 5. Output without smoothing 

Figure 6. Output with smoothing 



5.3 Reclassifying Training Data  
Another approach we tried was converting a two-class 
problem into a three- or a four-class problem. This approach 
was motivated by the simple observation that all of the other 
approaches we tried either resulted in large delays or in high 
false-positive rates. This suggests that early finger tapping 
blood flows look qualitatively more like a passive state than 
an active state; but perhaps the best clustering of the data 
would label these early regions as a distinct transition state, 
qualitatively unlike either the passive or the active state. Thus, 
we tried relabeling the data so that early periods of finger 
tapping belonged to a different class rather than the same 
class. We then ran a one-against-one multiclass SVM 
classifier using these labels. Finally, we co llapsed early finger 
tapping and sustained finger tapping into one class for 
evaluating the results. However, this approach proved 
ineffective: the accuracies decreased by several percentage 
points rather than increasing. One possible reason for this is 
that we tried a fairly naive approach for distinguishing 
between "early" and "sustained" finger tapping. One 
interesting possibility for further explorat ion is to run a 
clustering algorithm on the data corresponding to each label, 
and assign different sublabels to each cluster.  
 

6. Principle Component Analysis 

With 48 channels of raw data, we noticed an increase in 
generalization error when adding several features, indicating 
overfitting.  Additionally when trying to decide which set of 
brain data channels to use, we initially used all 48 channels to 
figure out the best combination which resulted in each SVM 
run taking several minutes.  When adding features, we needed 
the increase in speed from PCA.  We applied PCA as a 
postprocessing step on the selected features, chose the first 
(sorted by decreasing) k component, which cumulatively  
accounted for ~90% of the variance, and then passed the 
features projected onto the reduced dimension space (typically 
down to 6-8 dimensions) into the classifer. As noted above, 
this merely improved the runtime of the SVM classifier, but 
actually contributed about 4% to the accuracy of the AdaBoost 
classifier.  

 
7. Feature Selection 
In order to discover the best set of features to use, we 
implemented a greedy feature selection algorithm, using a 
heuristic of best accuracy to choose the optimal feature to 
add.  Though this might result in a local optimum, we noticed 
that several of the features had similar performance and that 
we achieved (at least locally ) optimal perfo rmance with just a 
few features. 
 

 
 
 

Feature  
(cumulative) 

Accuracy 
(% )  

Delay 
(seconds) 

Gradient History 77.546  --- 

History  78.736  4.55  

Gradient Scale  79.238  4.17  

OxyData + DeoxyData  79.450 4.09  

Oxygenated Data  79.344  4.09  

OxyData – DeoxyData  79.450  4.09  

Deoxygenated Data  79.503  3.99  

Gradient 79.503 3.99  

EMA’d Gradient  79.423 3.99  

OxyData  / DeoxyData  72.944  ---  

 
 

Feature (cumulative)  Accuracy  Delay  

History  76.699% 5.82  

Gradient  85.797%  3.69  

Deoxygenated Data  85.745%  3.65  

Gradient Sign  85.639%  3.55  

Gradient EMA’d  85.480%  3.56  

Gradient 85.216%  3.46  

OxyData - DeoxyData  85.216%  3.45  

OxyData + DeoxyData  85.083% 3.40  

Oxygenated Data  85.083% 3.40  

OxyData /  DeoxyData  72.706%  ---  

 

 

Table 1. Feature Selection Algorithm – With EMA 

Table 2. Feature Selection Algorithm – Without EMA 



8.  Remarks & Commentary 

8.1 Which Specific Features   

One major insight is that we get approximately the same 
accuracy and delay as long as we pick two or three good 
features (Gradient, gradient history, OxyData + DeoxyData, 
OxyData - DeoxyData, etc). Therefore for the purposes of 
reducing delay and/or improving accuracy, which features we 
select don't seem to make that big of a d ifference.   

8.2 Which classifier 

We also found that the specific learn ing algorithm did not 
seem to matter too much, except insofar as it can help avoid 
overfitting: both the SVM approach and the boosted decision 
trees approach indicated a tradeoff between low delays and 
low false-positive rates, with similar results attainable using 
either approach. 

8.3 Pre-filtering makes a big difference  

We found that pre-filtering the data was what made the large 
difference in jumping from a 72-73% accuracy (Adaboost and 
SVM, respectively) to the mid-80% range. Whether it's taking 
the fixed weighted average or an exponential moving average, 
the smoothing effect allows the classifier to find cleaner 
boundaries within the feature-space. Almost all the features 
(especially gradient, and gradient direction) suffer huge 
fluctuations as the NIRS data is very noisy. So it makes 
perfect sense that smoothing will help the classifier achieve 
higher accuracies and better delays.  
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Appendix  

Definitions  
 
NIRS - Near infrared Spectroscopy. Uses the transmittance of 
tissues to detect haemoglobin absorption. This is useful for 
tracking blood flow of oxygenated and deoxygenated blood in 
the brain. We use this data in order to train on whether the 
user is in a state of finger-tapping or not.  
Channel - A location on the brain on the brain where NIRS 
records bloodflow in a particu lar region. In part icular the 
channel we are most interested is channel 13, as that is the 
location of where the motor cortex (the reg ion of the cerebral 
cortex that controls motor movements). See diagram above.  
Onset delay - The difference in time from when the subject 
begins tapping to when the machine learn ing algorithm first 
classifies the time interval as tapping.  
Offset delay - The difference in time from when the subject 
stops tapping to when the machine learn ing algorithm first 

classifies the time interval as not-tapping. 
Accuracy - The percentage of time instances labeled (either 
tapping or not tapping) by the algorithm correctly  
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